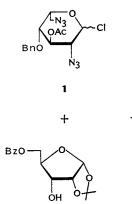

TOTAL SYNTHESIS OF NEOMYCIN B[†]

Sir:

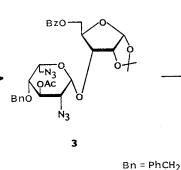
Neomycin B is a main component of the neomycin complex which was independently discovered by UMEZAWA et al.¹⁾ and WAKSMAN and LECHEVALIER²⁾. Neomycin group is a representative of pseudo-tetrasaccharide antibiotics, which provide some fascinating problems in carbohydrate chemistry^{3,4)}. Complete structures and absolute stereochemistry of neomycins were elucidated by HICHENS and RINEHART, Jr.⁵⁾. Total synthesis of neomycin C, another component of the neomycin complex, has been achieved by UMEZAWA and NISHIMURA6) and UME-ZAWA et al.⁷). Neamine (neomycin A), a pseudodisaccharide portion common to neomycins, was synthesized also by UMEZAWA et al. first⁸⁾ through conversion of paromamine and later⁹⁾ by glycosylation of the aminocyclitol component. On the other hand, because of the difficulty associated with glycosylation by 2,6-diamino-2,6-dideoxy-L-idose (neosamine B) which distinguishes neomycin B from C, total synthesis of neomycin B has not been successful¹⁰⁾. In this communication we wish to report the first total synthesis of neomycin B.

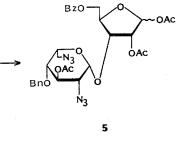
In order to solve the above-mentioned problem, we have reported the synthesis of 3-*O*-acetyl-2,6-diazido-4-*O*-benzyl-2,6-dideoxy-L-ido-pyranosyl chloride $(1)^{11}$ as a key intermediate for the preparation of 1,2-cis(β -L-) linked neo-

Neomycin B $R_1 = CH_2NH_2$ $R_2 = H$ Neomycin C $R_1 = H$ $R_2 = CH_2NH_2$

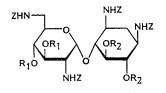

samine B. The present approach to neomycin B is characterized by stepwise glycosylation reactions: 1) Glycosylation of the 3-OH of a protected ribose $(2)^{12}$ with glycosyl chloride (1) to yield a masked disaccharide (3) corresponding to neobiosamine B, 2) glycosylation of the 5-OH of a selectively protected neamine (10) with the disaccharide portion to yield a masked pseudotetrasaccharide (11), and subsequent transformation of 11 into neomycin B.

Reaction of 1 with 2 was performed under modified KOENIGS-KNORR condition (mercuric cyanide, mercuric bromide, Molecular sieves 4A, CH_2Cl_2 , room temp overnight), yielding the desired β -L-connected disaccharide 3 in 70% yield, based on 2, and the α -L anomer (4, 7%). The anomeric configurations were assigned on the basis of the more dextro-rotating specific rotation^{\dagger †} of 3 (+139°; 4 +28°) and their NMR spectra¹³⁾. ¹H NMR (CDCl₃, 250 MHz); 3: δ 5.11 (d, $J_{1',2'}=2.0$ Hz, 1'-H); 4: δ 4.87 (d, $J_{1',2'} = 3.4$ Hz, 1'-H). ¹³C NMR (CDCl₃, 62.9 MHz); 3: δ 97.5 (C-1'); 4: δ 100.1 (C-1'). Deisopropylidenation (AcOH-2N HCl, 2:1) of 3 followed by conventional acetylation (Ac₂O pyridine) gave an anomeric mixture (5, α : $\beta \sim$ 1:3) of glycosyl acetates, 92%; $[\alpha]_{\rm p} + 82^{\circ}$, a neobiosamine B equivalent duly masked and functionalized for the coupling with protected neamine.

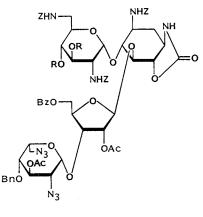

A new neamine derivative, in which all the functional groups except the 5-hydroxyl are protected, was prepared. Selective cyclohexylidenation of tetrakis(N-benzyloxycarbonyl)neamine (6)¹⁴⁾ by a modified literature procedure gave 7^{15} , the two hydroxyl groups of which were then acylated with o-methoxybenzoyl group to give a fully protected neamine 8, 72% from 6; $[\alpha]_{\rm p}$ +22.5°. Decyclohexylidenation (AcOH - H_2O - THF, 3:1:1) gave the diol 9, 98%; $[\alpha]_{\rm D}$ +59°. Treatment of **9** with sodium hydride in DMF in the presence of benzyltriethylammonium chloride gave cyclic 1,6-carbamate 10, 78%; $[\alpha]_{\rm D}$ +80°; ¹H NMR (CDCl₃+D₂O, 250 MHz) δ 1.55 (1H, q, $J = \sim 12$ Hz, 2-H_{ax}), 2.15 $(1H, m, 2-H_{eq})$, 3.65 and 3.68 (each 3H, s, OCH₃). Addition of the quaternary ammonium salt was found to improve the yield.

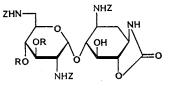

[†] Presented in part at the 54th National Meeting of the Chemical Society of Japan, Tokyo, April 1987, Abstr. 4111L16.

 ^{††} Optical rotations were measured, unless otherwise noted, at 20~22°C for solutions (c 0.7~
1.1) in CHCl₃. All new compounds gave satisfactory elemental analyses.

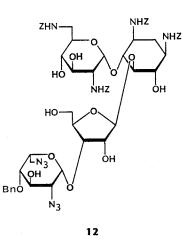


2




Bz = PhC=0

 $R_1 = R_2 = H$ $R_1 = H$ $R_2 =$ $R_1 = (OCH_3)Bz$ $R_2 =$ $R_1 = (OCH_3)Bz$ $R_2 = H$



10 R = $(OCH_3)Bz$

(OCH₃)Bz = o-Methoxybenzoyl Z = COOCH₂Ph

Coupling of the two portions was best effected by use of trimethylsilyl triflate (TMSOTf)¹⁶. Reaction of **10** with **5** (1.5 equivalent to **10**) in the presence of TMSOTf (benzene, room temp 4 hours) gave pseudo-tetrasaccharide 11 as a sole isolable product, 60%; $[\alpha]_D + 55^\circ$. Treatment of 11 with sodium benzyl alcoholate gave partially deprotected 12, 85%; $[\alpha]_D + 40^\circ$.

Test organisms* —	MIC (µg/ml)	
	Synthetic	Natural
Staphylococcus aureus FDA 209P	0.78	0.78
Micrococcus luteus PCI 1001	1.56	0.78
Bacillus subtilis NRRL B-558	0.20	0.39
Escherichia coli K-12	0.78	0.39
E. coli K-12 ML1629	100	100
E. coli K-12 LA 290 R 55	1.56	1.56
<i>E. coli</i> K-12 LA 290 R 56	1.56	0.78
<i>E. coli</i> K-12 W 677	0.78	0.39
<i>E. coli</i> K-12 JR 66/W 677	100	100
Klebsiella pneumoniae PCI 602	0.78	0.78
K. pneumoniae type 22 #3038	100	100
Mycobacterium smegmatis ATCC 607**	0.78	0.78

Table 1. Antibacterial spectra of synthetic and natural neomycin B.

* Agar dilution streak method (nutrient agar, 37°C, 17 hours).

** 48 hours.

Finally catalytic hydrogenation (4 kg/cm² H₂, 10% Pd-C) of **12** gave neomycin B, 65% (as free base). ¹H¹⁷ and ¹³C NMR¹⁸) spectra of the free base (in D₂O) and the specific rotation¹⁹⁾ of the hydrochloride [+54° (c 1.1, H₂O)] agreed well with those reported. The identity of the synthetic and natural specimens was further established by the antibacterial spectra as shown in Table 1.

> Takayuki Usui Sumio Umezawa

Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211, Japan

(Received April 13, 1987)

References

- UMEZAWA, H.; S. HAYANO & Y. OGATA: Classification of antibiotic strains of streptomyces and their antibiotic substances on the basis of their antibioterial spectra. Jpn. Med. J. 1: 504~511, 1948
- WAKSMAN, S. A. & H. A. LECHEVALIER: Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109: 305~307, 1949
- UMEZAWA, S. & T. TSUCHIYA: Total synthesis and chemical modification of the aminoglycoside antibiotics. *In* Handbook of Experimental Pharmacology, Vol. 62. *Eds.*, H. UMEZAWA & I. R. HOOPER, pp. 37~110, Springer-Verlag, Berlin, 1982

- UMEZAWA, S.; S. KONDO & Y. ITO: Aminoglycoside antibiotics. *In* Biotechnology, Vol. 4, Chap. 11, *Eds.*, H. PAPE & H.-J. REHM, pp. 307~358, VCH Verlagsgesellschaft, Weinheim, 1986
- 5) HICHENS, M. & K. L. RINEHART, Jr.: Chemistry of the neomycins. XII. The absolute configuration of deoxystreptamine in the neomycins, paromomycins and kanamycins. J. Am. Chem. Soc. 85: 1547~1548, 1963
- 6) UMEZAWA, S. & Y. NISHIMURA: Total synthesis of neomycin C. J. Antibiotics 30: 189~ 191, 1977
- UMEZAWA, S.; A. HARAYAMA & Y. NISHIMURA: The total synthesis of neomycin C. Bull. Chem. Soc. Jpn. 53: 3259~3262, 1980
- UMEZAWA, S.; K. TATSUTA, T. TSUCHIYA & E. KITAZAWA: Synthesis of neamine. J. Antibiotics, Ser. A 20: 53~54, 1967
- HARAYAMA, A.; T. TSUCHIYA & S. UMEZAWA: A synthesis of neamine. Bull. Chem. Soc. Jpn. 52: 3626~3628, 1979
- UMEZAWA, S.; Synthesis of aminocyclitol antibiotics. In Animocyclitol Antibiotics. ACS Symp. Ser., No. 125, Eds., K. L. RINEHART, Jr. & T. SUAMI, pp. 15~41, American Chemical Society, Washington, D.C., 1980
- USUI, T.; Y. TAKAGI, T. TSUCHIYA & S. UME-ZAWA: Synthesis of 3-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy-L-idopyranosyl chloride, a glycosyl halide for the synthesis of neomycin B. Carbohydr. Res. 130: 165~177, 1984
- 12) WATANABE, I.; T. TSUCHIYA, T. TAKASE, S. UMEZAWA & H. UMEZAWA: Synthesis of a lividomycin B analogue, 5-O-[3-O-(2-amino-2deoxy-α-D-glucopyranosyl)-β-D-ribofuranosyl]-

3'-deoxyparomamine. Bull. Chem. Soc. Jpn. 50: 2369~2374, 1977

- USUI, T. & S. UMEZAWA: Total synthesis of neomycin B. Carbohydr. Res., to submitted, 1987
- 14) UMEZAWA, S.; S. KOTO, K. TATSUTA, H. HINENO, Y. NISHIMURA & T. TSUMURA: Studies of aminosugars. XXIII. The total synthesis of kanamycin B. Bull. Chem. Soc. Jpn. 42: 537~ 541, 1969
- 15) TAKAGI, Y.; D. IKEDA, T. TSUCHIYA, S. UME-ZAWA & H. UMEZAWA: Synthesis of 1-N-[(S)-4-amino-2-hydroxybutyryl]-3',4'-dideoxyneamine. Bull. Chem. Soc. Jpn. 47: 3139~ 3141, 1974
- 16) Ogawa, T.; K. Beppu & S. Nakabayashi:

Trimethylsilyl trifluoromethanesulfonate as an effective catalyst for glycoside synthesis. Carbohydr. Res. $93: C6 \sim C9, 1981$

- BOTTO, R. E. & B. COXON: Two-dimensional proton J-resolved NMR spectroscopy of neomycin B. J. Carbohydr. Chem. 3: 545~563, 1984
- 18) HANESSIAN, S.; T. TAKAMOTO, R. MASSÉ & G. PATIL: Aminoglycoside antibiotics: Chemical conversion of neomycin B, paromomycin, and lividomycin B into bioactive pseudosaccharides. Can. J. Chem. 56: 1482~1491, 1978
- DUTCHER, J. D.; N. HOSANSKY, M. N. DONIN & O. WINTERSTEINER: Neomycin B and C, and some of their degradation products. J. Am. Chem. Soc. 73: 1384~1385, 1951